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A TYPE OF LINEAR GAME WITH MIXED CONSTRAINTS ON THE CONTROLS* 

V.I. uKHoBmov 

A g~eiscons~deredinwhi~hthe first person's control is subject to a 
geometric and an integral constraint. The second person can choose a 
control, subject to the geometric constraint. The game ends at a given 
instant. The sets of controls values and the terminal set are of the 
same type. Theconditionsare foundforthegametoendfromagiveninitial 
position. The player's controls are constructed, and an example is given. 

Differential games with mixed constraintswere considered in /I, 21. 
The present types of game may not satisfy the regularity condition /2, 3/. 

1. A linear differential game with a fixed instant of termination can be reduced by a 
linear change of variables /3/ to a game with simple motion. 

We consider the game whose equations of motion are 

2' = --a (t) u + @ (t) v, ZER" (1.1) 

v'=-lul, Iui<yn ivi<% Y>O 

Here, Ix 1 is the norm of the vector sERL, CC and @ are continuous non-negative functions 
for t<p, where p is the instant of termination. The second equation in (1.1) characterizes 
the law of variation of the resources expended on forming the control u. The choice of this 
control is subject to the condition v SO. 

In the phase space of the game 2 = {(Z,v):ZER", v > 8)we are given the terminal set 

x = Cfz, v): Ia I Q 'p (v). v > 81, 6 > 8 @.2) 

For instance, if the termination conditions are specified by 1 Z(p) I\( a, then pi(v)= a 
and 6 = 0. 

We assume that the continuous function cp is non-negative and does not decrease for 
Y > 6. 

We will write the operator of program absorption /4/ for terminal set (1.2). Theposition 
(z, v)E 2 belongs to the set TsP(X) if and only if, given any control Iv(t) I< 1, measurable 
in the interval !r,pl, there is a control la(t) j <_<, measurable for T< t<p, such that 

/z+~(-~ct,uct,+B(t)V(t))dtI~B(v(P)). (1.3) 
r 

V(P)==V-f,U(T),&&s 
1 

With v> 0 we put 

f(p,r,v)=mar~a.(t)w(t)dt, fw(t)dt<v, O<w(t),(v {M 
r r 

We can then obtain from (1.3): 

The maximum with respect to p is reached in (1.6), since function (1.4) is continuous 
with respect to v. For, regarding (1.4) as a problem of moments, we obtain /5/ 

m f(p,z,v)=max~ p(t)&, ~(Z)=m~n(~-~,v/y) s 
I 
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Here, U (I)is the measure of the set 1 C kc,pl. It follows from (1.7) that, for O<vr<v,, 

0 < f IP, Z, vl) - f (P, a, 3) < (vi - ~~1 ma a My 7 < t < P U.8) 

We consider an initial point (Z, v), v> 6, which does not belong to set (1.5). We con- 
struct a second player's control which guarantees that set (1.2) is-not hit at 

We put 

U (t) = z/J 2 I, z + 0; I u @) I = 1, 2 = 0 
It then follows from the equations of motion (1.1) that, with any control 

any h>z, 

instant p. 

U-9) 
I I I -G Y and 

(1.10) 

Bence, using the inequality Iz ]>$(T,Y) and the definition of function (1.4), we obtain 

I 2 (P) I > cp (v (PN. 
2. Consider the possibility of moving the position at instant p into set (l-2), from 

an initial state belonging to set (1.5). 
The first person's strategy /3/ will be sought in the form 

ZJ Q, 2) = UJ 0) u (z), 0 < 2l.J (Q < y (2.1) 
U(O)-{z:fzl<i}; U(z)==z/lzj, zf0 

For the initial condition Z(2)= 2, v(r) = Y, and any functions O<w(t)Q y and /V(t) /g 1, 
measurable in the interval [r,p], we understand by the motion Z($ V(t) any solution of the 
differential inclusion 

2‘ ft) E ---a (t) lB ft) u (2 ($1) -I- B (t) v @); 2 (r) = 2 (2.2) 
v' (t) = -w (t), 2 (t) + 0; v' (t) E i-w (t), 01, 2 (t) = 0, 

v (7) = v 

For any z,r<t<p, the right-hand side of inclusion (2.2) is a convex compactum, which 
is an upper semicontinuous function of z and a measurable function of t. Hence /6/, the 
solution z(t), v(t) of inclusion (2.2) exists in the interval fr, pl. 

Strategy (2.1) will guarantee that terminal set (1.2) is hit at instant p from the 
initial state s,V,r, if, for any control Iv(t)]< 1 and any solution of inclusion (2.21, the 
condition (zfP),v(P))fX is satisfied. Recalling that the function rp is monotonic, we can 
write the termination condition as 

(2.3) 

Let the absolutely continuous function z(t), r<,<<p, be a solution of inclusion (2.1). 
Since the function 1s 1 satisfies a Lipschits condition, the noxm I s (4 I is also an absolutely 
continuous function. Hence the derivative 12(t) r exists almost everywhere and /6/ 

I z (t) [' = lim b-r (I 2 (t) + hz' (t) 1 - 12 (t) I), h -+ 0, h 3 0 (2.4) 

The set of points z<t<p, where jr(t) I= 0 and jz(t) f = 0, is not morethandenumerable. 
Hence all the points tE [z,pl, at which the derivatives z‘(t) and 1 z (t) 1’ exist, can be 
divided into two classes 

Ix = {t: jz(t) 1 > 01, I, = {t: j 2 (t) 1 = 0, Iz (t) /* = O} (2.5) 

The measureofthe union of sets (2.5) is equal to the measure of the interval [z, PI. 
It follows from (2.4) that, given any solution of inclusion (2.1) , we have the inequality 

lz (t) I' < - a 0) w (t1 + B G), t E 1, (2.6) 

We take the measurable function OQw(t)Qy for z<t<~ and the number a, We put 

F (L z) = 12 I- a(t), a 0) = 5 (a tr) w PI - B (4 dr -i- a 
t (2.7) 

With the chosen control v(b) we consider the solution Z(t) of the first inclusion of 
(2.2). 

Lemma 1. Let u(t)>0 for z<t<p and F(z,z)<O. Then, for all z<tQpr 
p (6 2 (t)) < 0 G@ 
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Proof. The function F of (2.7) satisfies a Lipschitz condition with respect to the set 
of its variables. Hence the function F(t,~(t))=f(t) is absolutely continuous. From (2.51, 
(2.6), and. (2.71, we have 

f' (t) < 0, II 0) I > 0; f: 0) = a 0) w (t) - B (t), 1 I (t) ) = 0 (2.9) 

It follows from the condition a(t)>0 that, if Iz(t)l=O, then (2.8) is satisfied. 
Let I z (t) ( > 0. Then, by the condition P(z,a)<O, there exists a number to?t such that 

f (to) d 0 and Iz(r)l>O for to<rdt. From this and (2.9) we obtain (2.8). 
It follows from (1.7) that, if the function a decreases for V<t<(, then (1.6) takes 

the form 

~(T,V)=-max,(~(V--((S-d)+via(r)dr)-_~(r)dr 
7 5 

‘t < s < min Cp; z + (V - 6)/y) 

(2.10) 

Let the maximum be reached in (2.10) with St. We put 

Theorem 1. Let Is I<cl)(z,v) and let one of the following hold for z<t<p: 

B 0) = yo 0) (2.12) 

v@)>fB(r)dr (2.13) 

?a (t) i B (t); t, < t, + a (L) < a (tJ (2.14) 

-P (d a B (0; t1 -c t, =+ a @I) > a (Q; M (z, Y) > 0 (2.15) 

Then, there is a function 0 <w(t)<y, measurable for zdt<Pr such that, given any 
measurable control 1 v(t) I < 1, any solution of inclusion (2.2) satisfies condition (2.3). 

Proof. It follows from (1.6) that there is a number OQ+ <V - & for which 

(2.16) 

As w(t)in inclusion (2.2) and in the definition of the function (2.7) wetakethe solution 
of problem (1.4) with V = P. Then, from (2.16), F(7, z)<O and a (T)> 0. If we can show 
that a(t)>0 for zdt<P, then inequality (2.8) will hold for t = p. This inequality, by 
(2~7) and the definition (2.16) of a, takes the form (2.3). 

Let (2.12) hold. Then the function (2.7) a(t)>a(~)> 0 for 7 df. 
If (2.13) holds, then, in view of form (2.16) of the number d, and the fact that rp is 

not decreasing, the function (2.7) s(t)> 0 for 'C< t. 
Let condition (2.14) hold. Then, from (1.41, w(t) = 0 for V<t<ta and 20 0) = Y 

for to d t Qp, where to = max (z; p - p/v). Consequently, a'(t)= p(t)> 0 for *<-<<do and 
a' (t) = -_ya (t) + /3 (t) d 0 for to < t< p. From this and the condition U(V)>& U(P)>O, 
we have a(t)> 0 for V<t <p. 

Let (2.15) hold and let the maximum in (2.10) be reached at the point sl. Then, W(t)=Y 
for z<$<sa and w(l)= 0 for sl< t<p. Consequently, u'(t) = -ye(t) + fi (t)< 0 for t <a 
and a' (t) = fi (t) > 0 for ~1 < t. Hence the minimum value is a(~~) = M(+, v)> 0. 

Lemma 2. Let the first condition (2.15) hold and let v > 6 f y (p - ?). Then, M (T, V) > 0. 

Proof. The number (2.10) is not less than thevalueof the right-hand side of (2.7) with 
s = P* Hence, using the first condition (2.15) and the fact that cp is non-negative, we obtain 

cp (v - Y (a - 7)) ,y[ a(r) dr >"s I3 (r) dr 
8, 6, 

3. Consider the case when 
v<G+y(p-T) 

We assume that, for r< t<p, the first two conditions (2.15) hold and 

9, (FL) <a (P)(P - 6), 6 < W c 6 + Y (P - 7) 

(3.1) 

(3.2) 

We introduce the function 
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e B w 8 (t, s) = y (s - t) + \ a dr, t < s 
s 

Lemma 3. Let the initial position z, v be such that 

12 I > a (z)(v - B (z, z) - 6) (3.4) 

Then the second player, by making a finite number of corrections to his control, can 
prevent the set (1.2) being hit at the instant p. 

Proof. By inequality (3.41, numbers 't= ts<tl<...<$+l=~ exist, such that 

(3.4 

When to<t<ttr the second player takes control (1.9). Then, from (1.10) and the con- 
dition that the function a be monotonic (2.151, given any first player's control iu(t)jdy, 

Using the vector s 01) , the second player constructs control (1.9) with t, < t <t,, etc. 
At the instant of termination tk+, = P, the inequality lz (p) I > a (p). (v(p) - 6) will hold. 

Hence, using inequality (3.21, we see that the position z(p),v(~, does not belong to set (1.2). 
In view of this lemma, we need to consider the case 

(3.6) 

In accordance withthe first condition (2.151, the derivative of function (3.3) with 
respect to the variable s is non-negative, i.e., the function is not decreasing with respect 
to s. Consequently, for any Y satisfying (3.1) and (3.61, we can define the number 

s(v) = max {s: 1: <s < p, v = 6 + B (T, s)} (3.7) 

We put 

(3.8) 

Theorem 2. Let the initial position 2, v satisfy the condition )z 1 <$,(z,Y). Then, 
there is a function O< w (t)<~, measurable for x< t<p, such that, with any measurable 
control Iv(t) j\<i, any solution of inclusion (2.2) satisfies condition (2.3). 

Proof. We put 

w(t)=y, z<ttgs{v); ~~t)=~(t)/~(t), s(v)<t<p (3.9) 

Then, by (3.8), 1.z i<a(~), where a(f given by (2.7) with a=O. It follows from the 
first condition (2.15) that, for the function (3.9)) a(t)>0 for ~<t< p. By Lemma 1 we 
obtain /z(p) 1 = 0. For function (3.9), the number (2.3) vP= 6. From thisandtheinequality 
(p(6)> 0 we obtain condition (2.3). 

Theorem 3. Let the initial position z, v satisfy the condition lz I>&@, Y). Then, 
the second player, by making a finite number of corrections to his control, can prevent set 
11.2) being hit at the instant p. 

Proof. If we have the equality in (3.6), then the initial position satisfies condition 
(3.4). 

Let us have the strict inequality in (3.6). Then, r<s<p, where we put s = s (v). 
The second player takes control (1.9) for 'c<t<s. By (1.10) and the condition that the 
function mbe monotonic, we find that, with any first player's admissible control, I 2. (4 I > 
a (s)(u (s - 4 - 9 + v w* From this and expression (3.7) for S, we have /z(S) i>a(S)*(V(S)- 
B {s, s) - 6). By Lemma 3, the second player, on continuing the game from point z(s). v(S), can 
prevent set (1.2) being hit at instant p. 

we will evaluate function (2.10) on the assumption that (p(6) = 0 and 
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cp h) - cp (%) < a (P)h - 4, 6 < v2 < Vl (3.10) 

Then, inequality (3.2) is satisfied. Denote by a(S) function whose maximum value is 
calculated in (2.10). Then, it follows from (3.10) and (2.15) that, with SI<% 

(3.11) 

It follows from (3.7) that 

e=s + p BP) s -adr, s=s(v) 
a (4 8 

We can see from this that function (3.8) and (3.11) satisfy the inequality 

11, (7, y). In the present case, therefore, the family of sets W(r)=‘ Tzp(X) is not?'~tIE 
bridge /3/, leading to target (1.2). 

4. Example. We considertheproblem on the encounter (It(q) --y (q) I da) at a given instant 
g of a point moving with bounded velocity Iy'[< B, with a point of variable state whose motion 
is described byMeshcherskii's equation /5/ t"= bf mm’(t)/m(t). Here, b is a constant vector 
characterizing the external force; m(1) = m&ml(t) is the mass, where m0 is the fixed part of 
the mass, and m, (0 is the reactive mass; u) is the relative velocity separating the particles, 
the magnitude 1~ 1 of which is assumed constant. 

We put 

z = y - I - (q - t) z.’ + b (q - Qz/2, u = y'/b (4.1) 
U = -wm' (t)lm (t), v (t) = 1 w I In (m (Q/m,) 

Then, the encounter condition and the equations of motion take the form 

I 2 (q) I f 4: a’=-(q-t)“+j%, Iul<i, v’=--_IuI (4.2) 

The inequality v(t)> 0 means that the reactive mass is non-negative. We assume that 
the thrust is bounded: IuI<Y. 

The first player, who chooses control u, tries to realize an encounter. The second 

player, who chooses control V, has the opposite aim. 
In this game, the function s(t)= q-t, b(t)= fl, and in the terminal set (1.2) m(v) = a, 8=0. 
We write the function (2.10) 

cp (7, v) = Y (c (r) - (P - rW2 (4.3) 
c (t) = (q - T)* - 2 (B (q - 7) + d/y, r = min (9; 7 + Y/Y) 

Put 
2 = y mar (a/b; ply), p = q - Z/y (4.4) 

Then, when p<t(q, either condition (2.12) or (2.13) holds. Thus, for initial instants 

r = (P. el , Theorem 1 is applicable. The function w(t) in (2.2), guaranteeing an encounter, is: 
w (0 = Y for r<tSr and w(t)=O,t>r. From this and (4.1) and (2.1) we obtain the relative 
velocity and the law of mass variation 

m = - 1 w I (rl I a I), m (t) = m (r) exp (-Y (t - r) I I w I) (4.5) 

Consider the case when a<B'/(2y). Then, $(%v)<O for all v>O and p< 7 <7(a)=,?-- 

(fi - ((9 - ZOY)"')/Y. The set (1.5) is empty for these z Hence /7/, for an initial instant ?<~(a) 
and any initial position, there is a second player's strategy such that the first player 
cannot realize an encounter. 

Let D > b*/(ZY). Then, C(T)> 0 for all r and set (1.5) is not empty for p"c~,< q. 

To write the condition for the termination of the game which starts at an initial instant 
7<P, we have to consider the problem of hitting at instant p the terminal set (1.2) with 
function cp(v) =Ip@,v). From (4.3) and (4.4) we have 

cp (v) = (1 - 6)*/(2Y) - (max (0; 2 - v))*/(2Y) 
V > 6 = I - (rn - zgr + 2aY)"r 

The derivative of the function m is bounded by l/y= s(p). Consequently, 
are satisfied. 

'By Lemma 2 and Theorem 1, with v>br;t (p -7)y= 6+-(q-7)y- 1 the control 

conditions (3.10) 

which guarantees 
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an encounter is given by (4.5). 
Let inequalities (3.1) and (3.6) hold, i.e., 

a+ p1+ -T) +),y,, i_ (q--r) y - E 

We write the equation for the number s of (3.7) : 

Y = 8 + (s - T) y + p In ((q - s)r/Z) 

Then, we find from (3.9) that the law of mass variation has the form (4.5) with ~<t-<*r 
and with s<f<p, 

m(t) = m (8) ((q - t)i(q - sp, ‘% = p I / 20 I 
Knowing the conditions foran encounter with any a>O, we can find /4/ the value of the 

game, when the pay-off is the distance /z(q)/. In our example, the set Tt"(X) is not a stable 
bridge. This implies that termination of the game after the first instant of absorption /8/ 
is not possible for all initial positions, while the value of the game is not the same as the 
programmed max-min. 
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CONSTRUCTION OF MIXED STRATEGIES ON THE BASIS OF STOCHASTIC PROG~~S* 

A.N. KRASOVSKII 

The optimal control problem in the class of mixed strategies is considered, 
under the condition that the guaranteed result is minimized. An efficient 
method of constructing the optimal strategy by means of stochastic program 
synthesis is given. The results extend the theory given in /l-7/. 

1. Formulation of the problem. We consider the object described by the differen- 
tial equation 

z' = A (t) I + f (t, u, u). t,, < t < ‘@, u EP, u E I%’ tf.*) 

where t is the n-dimensional phase vector, u the r-dimensional control vector, v the s- 
dimensional noise vector, R and W are compacta, the matrix function -4 (t)and vector function 
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